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Abstract
In this communication, the entanglement degree due to quasi-mutual entropy
of a three-level atom interacting with a single cavity field is investigated. We
consider the situation for which the three-level system is initially in a mixed
state, whereas the field may start from either a coherent or a squeezed state. We
present a derivation of the unitary evolution operator on the basis of the dressed-
state formalism taking into account an arbitrary form of nonlinearity of the
intensity-dependent coupling, by means of which we identify and numerically
demonstrate the region of parameters where significantly large entanglement
can be obtained. Most interestingly, it is shown that features of the degree of
entanglement are influenced significantly by different forms of the nonlinearity.
The atom and radiation subsystems exhibit alternating sets of collapses and
revivals due to the initially mixed states of the atom and radiation employed
here.

PACS numbers: 32.80.−t, 42.50.Ct, 03.65.Ud, 03.65.Yz

1. Overview

Cavity quantum electrodynamics in the strong coupling regimes has become an important
ground for testing fundamental thoughts of quantum physics. For recent advances in this field,
for example, see [1] and references therein. Fortunately, owing to technological progress,
experiments considered unrealistic up to recently, can now be carried out. As a result,
various intriguing genuinely quantum effects traceable back to the superposition principle,
entanglement, quantum interference, etc, are now within experimental reach. Experiments of
increasing difficulty in cavity quantum electrodynamics over the last years have, for example,
made it possible to test fundamental radiation–matter interaction models involving single
atoms. Moreover, cavity field states possessing remarkable nonclassical features have been
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generated and detected. Such a stimulating situation essentially stems from two decisive
advancements. The first is the invention of reliable protocols for the manipulation of single
atoms. The second is the ability to produce desired bosonic environments on demand. This
progress has led to the possibility of controlling the form of the coupling between individual
atoms and an arbitrary number of bosonic modes. As a consequence, fundamental matter–
radiation interaction models such as, for instance, the JC model and most of its numerous
nonlinear multiphoton generalizations, have been realized or simulated in the laboratory and
their dynamical features have been tested more or less in detail.

On the other hand, the concept of entanglement is probably the most striking feature of
quantum mechanics. By definition a pure quantum state of two or more subsystems is said to
be entangled if it is not a product of states of each component [2]. It is worth noting that while
entanglement may be created only if there exists a direct or indirect interaction mechanism
between the parts in play, generally speaking, an entangled state may describe a physical
situation wherein two or more entangled single subsystems are decoupled. The behaviour
of the system in such a condition is dominated by the appearance of quantum correlations
which become rather puzzling and counterintuitive when referred to well-separated parts of
the system. Entanglement is the underlying mechanism for the measurement of quantum
observables [3] and is responsible for the occurrence of decoherence effects in the dynamics
of quantum systems [4]. A method using quantum mutual entropy to measure the degree
of entanglement in the time development of the Jaynes–Cummings model has been adopted
in [5, 6]. Alioui et al [7] further provided a comparison of some criteria for mixed-state
entanglement in the Jaynes–Cummings model. It has been shown in [8] that entanglement
can always arise in the interaction of an arbitrarily large system in any mixed state with a
single qubit in a pure state. They have demonstrated this feature using the Jaynes–Cummings
interaction of a two-level atom in a pure state with a field in a thermal state.

The scope of this paper is essentially to examine the entanglement for an initial mixed state
of the atom. A systematic study of the entanglement properties of the atom–field interaction
that have emerged from the quantum relative entropy has not been performed in multi-level
atoms. It is the objective of the present contribution, which is a progress report in character, to
contribute to this systematic study. We shall here focus on what is perhaps the simplest situation
in this context, namely a three-level atom interacting with a single cavity field, including an
arbitrary form of the intensity-dependent coupling. Thus the present work sheds some light
on the entanglement behaviour of multi-level systems when initially an entangled mixed state
of the coupled system is considered and how this is affected by different parameters of the
multi-level system. The scheme we are going to discuss exploits the passage of a single atom
only through the cavity. We wish to underline from the beginning the relevance of this aspect
from an experimental point of view. Preparing and controlling a single atom is certainly much
easier to achieve with respect to the case when the manipulation of many atoms is required.
In addition, taking into consideration the low efficiency [9] of the atomic state detectors today
used in laboratory, conditional measurement procedures involving one atom only instead of
many ones, have to be preferred. The dynamics of several Hamiltonian models describing
such systems is exactly treatable and, in most cases, testable in the laboratory. Also, a more
intriguing reason is that investigating these systems is likely to shed light on basic questions
of quantum mechanics. The point to be appreciated is indeed that, studying such systems,
one has the opportunity to induce entanglement and to control its evolution in a multipartite
physical system. The physical scenario relative to the problems we shall be faced with in a
quantum electrodynamics context, involves three-level atoms interacting, one at a time, with
a single quantized electromagnetic mode sustained by a high-Q resonator. In this case, the
dynamical properties of the system are investigated using a Hamiltonian model characterized
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Figure 1. Schematic diagram of the degenerate �-type three-level atom interacting with a single-
mode field. The levels |a〉A, |b〉A and |c〉A have the energy values h̄ωa, h̄ωb and h̄ωc , respectively.
The transition |a〉A −→ |b〉A (|a〉A −→ |c〉A) is effected through k (s) photons of the field
mode â with an eigenfrequency �. The detunings of the levels |a〉A, |b〉A and |a〉A, |c〉A are
�1 = ωab − k� and �2 = ωac − s�, respectively.

by the presence of bosonic variables describing the quantized electromagnetic mode and of
pseudo-spin atomic operators.

The organization of this paper is as follows. In section 2 we introduce our Hamiltonian
model and give an exact expression for the unitary evolution operator Ut in the frame of the
dressed-state formalism. In section 3 we employ the analytical results obtained in section 2
to investigate the properties of the entanglement degree due to the quasi-mutual entropy. We
devote section 4 to our discussion in which we assume that the electromagnetic field is in
different states such as coherent and squeezed states, and that the atom is initially in the mixed
state. Finally, a summary of the main points of this work ends the paper and a few avenues
for further investigations are indicated.

2. Theoretical model

During the last decade many theoretical and experimental efforts have been made in order to
study two-photon processes involving atoms inside a cavity, stimulated by the experimental
realization of a two-photon micromaser. The two-photon process is also an efficient way of
generating nonclassical states of the electromagnetic field. In this paper, we consider the
atomic system displayed in figure 1. We study a three-level atom injected into a cavity field
in a �-configuration, where the dipole-allowed transitions between the upper level |a〉A and
the lower levels |b〉A and |c〉A are non-resonant with the cavity mode. The transition between
the two lower levels is dipole forbidden. Furthermore, we assume the interaction including
an arbitrary form of nonlinearity of the intensity-dependent coupling. In the rotating wave
approximation, the interaction of the cavity mode with the injected atom is described by the
Hamiltonian

Ĥ = ĤA + Ĥ F + Ĥ in. (1)

Here ĤA and Ĥ F describe the free atom and free field, respectively, and Ĥ in describes the
atom–field interaction in rotating wave approximations, where

ĤA = ωa|a〉A〈a|A + ωb|b〉A〈b|A + ωc|c〉A〈c|A
ĤF = �â†â

Hin = γ1{f (â†â) ⊗ âk ⊗ |a〉A〈b|A + â†k ⊗ |b〉A〈a|A ⊗ f (â†â)}
+ γ2{f (â†â) ⊗ âs ⊗ |a〉A〈c|A + â†s ⊗ |c〉A〈a|A ⊗ f (â†â)}.

(2)
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The operator |i〉A〈i|A (i = a, b, c) describes the atomic population of level |i〉A with energy
ωi and the operator |i〉A〈j |A (i �= j) describes the transition from level |i〉A to level |j 〉A.

The transition between the levels |a〉A and |b〉A (|a〉A and |c〉A) is effected through k (s)

photons with frequency ωab (ωac), where the photon numbers k and s are positive integers.
We denote by â and â†, respectively, the annihilation and the creation operators for the mode
of the cavity field, and � the field frequency. We denote by γif (a†a) an arbitrary intensity-
dependent coupling. The parameters γi are corresponding atom–field coupling constants.
In the standard predictive picture of quantum mechanics, the absorption and emission of
multi-photons between different atomic levels are of course familiar processes. Experimental
implementation of the theoretical idea proposed herein would possibly depend on the use of
trapped neutral atoms or ions in a high-Q cavity, or an atomic beam in transit through the
cavity [10].

Mixing two entangled pure states could result in a mixed state with entanglement much
less than the average entanglement of the states mixed. Now, we suppose that the initial state
of the atom is given by

ρA(0) = ς1|a〉A〈a|A + ς2|b〉A〈b|A + ς3|c〉A〈c|A ∈ SA (3)

where ςi � 0, and ς1 + ς2 + ς3 = 1. Also we suppose that the initial state of the field is given
by

ρF (0) = |� 〉〈� | ∈ SF (4)

where |� 〉 = ∑∞
n=0 bn|n〉 and b2

n = |〈� |n〉|2 being the probability distribution of photon
number for the initial state, with the normalization condition

∑∞
n=0 b2

n = 1. The continuous
map E∗

t describing the time evolution between the atom and the field is defined by the unitary
evolution operator generated by Ĥ such that

E∗
t : SA −→ SA ⊗ SF

E∗
t ρ = Û t (ρA(0) ⊗ ρF (0))Û ∗

t (5)

Û t ≡ exp(−itĤ ).

This unitary evolution operator Ut can be written as

Û t =
∞∑

n=0

3∑
j=1

exp
(−itE(n)

j

)∣∣	(n)
j

〉〈
	

(n)
j

∣∣ (6)

where

E
(n)
j = (j − 1)2(2−j)(δ + (−1)jµ(n)) (7)

are the eigenvalues with

µ(n) =
√

V 2
n + U 2

n + δ2 (8)

where δ = �/2 and � is the detuning between the atomic frequency and the cavity mode.
In order to keep the mathematical effort reasonable and to avoid too lengthy expressions,
we have assumed �1 = �2 = �, where �1 = ωab − k� and �2 = ωac − s�;
Vn = γ1f (n)

√
(n + k)!/n! and Un = γ2f (n)

√
(n + s)!/n!. The parameter µ(n) is a modified

Rabi frequency. Hence we can easily express the eigenvectors of an atom in the cavity in the
interaction picture in the form∣∣	(n)

j

〉 = C
(n)
j1 �

(n)
1 + C

(n)
j2 �

(n)
2 + C

(n)
j3 �

(n)
3 (9)
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where
(
�

(n)
1 ,�

(n)
2 ,�

(n)
3

) = (|n + k〉 ⊗ |b〉A, |n〉 ⊗ |a〉A, |n + s〉 ⊗ |c〉A), and C
(n)
ji are given by




C
(n)
11

C
(n)
21

C
(n)
31

C
(n)
12

C
(n)
22

C
(n)
32

C
(n)
13

C
(n)
23

C
(n)
33


 =




Un

µ1(n)

Vn√
2µ2(n)+�µ(n)

Vn√
2µ2(n)−�µ(n)

0
δ+µn√

2µ2(n)+�µ(n)

δ−µn√
2µ2(n)−�µ(n)

−Vn

µ1(n)

Un√
2µ2(n)+�µ(n)

Un√
2µ2(n)−�µ(n)


 (10)

µ1(n) =
√

V 2
n + U 2

2 . Having obtained the explicit form of the unitary evolution operator Ut ,
the eigenvalues and the eigenfunctions for the system under consideration, we are therefore in
a position to discuss the entanglement of the system.

3. Derivation of the entanglement degree

In pure-state quantum mechanics the state of the system is usually represented by a
(normalized) wavefunction, which is a (unit) vector in a Hilbert space. If the system is
in the pure state |ψ(t)〉 then ρ(t) is simply the projector onto this state, i.e.,

ρ(t) = |ψ(t)〉〈ψ(t)| (11)

in such a way that ρ2(t) = ρ(t) and Tr ρ2(t) = 1. A mixed state instead is defined by the
class of states which satisfy the inequality Tr ρ2 � 1. On the other hand, the existence of
entangled states within quantum mechanics is one of the most striking features of the theory.
These states have the potential to show nontrivial nonclassical effects [9]. Considering mixed
states, several entanglement measures have been defined in this case [11, 12]. The set of
disentangled states D is usually considered as the set of all states which can be written as
convex combinations of pure tensor states:

D := {ρ ∈ τ | ρ ≡
∑

i

piρ
(1)
i ⊗ ρ

(2)
i

∑
i

pi = 1 ρ
(k)
i ∈ τ(Hi ). (12)

To quantify the amount of entanglement of a state σ is to define a distance of σ to the set D

[11], so that the entanglement E of σ is given by

E(σ ) := min
ρ∈D

D(σ‖ρ). (13)

Here D is any measure of distance between the density matrices σ and ρ, not necessarily a
distance in the metrical sense. There are several possibilities to define such a distance. The
relative entropy which has been proved to be one measure satisfying all the given conditions
[11], is given by

Iσ (ρ‖σ) ≡ Tr(σ log σ − σ log ρ). (14)

Moreover, according to the triangle inequality of Araki and Lieb [14], for entangled pure
states, the Iσ (ρ‖σ) becomes twice of the entropy of the induced marginal state. That is, if
we want to know the degree of the entangled pure states, it is sufficient to use von Neumann
entropy. However, for entangled mixed states which appear in many cases, we have to use the
Iσ (ρ‖σ).

The results obtained in the previous section will be applied, in this section, to derive the
entanglement degree for a single three-level atom interacting with a cavity field without using
the diagonal approximation method adapted in [5, 6]. With a certain unitary operator, the final
state after the interaction between the atom and the field is given by

E∗
t ρ = Û t (ρA(0) ⊗ ρF (0))Û ∗

t

= ς1Ut |a;� 〉〈� ; a|U ∗
t + ς2Ut |b;� 〉〈� ; b|U ∗

t + ς3Ut |c;� 〉〈� ; c|U ∗
t . (15)
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Therefore the von Neumann entropy of the total system is given by

S(E∗
t ρ) = −ς1 log ς1 − ς2 log ς2 − ς3 log ς3. (16)

Taking the partial trace over the atomic system, we obtain

ρF
t = Tr AE∗

t ρ

= ς1

3∑
i=1

|ψi(t)〉〈ψi(t)| + ς2

6∑
i=4

|ψi(t)〉〈ψi(t)| + ς3

9∑
i=7

|ψi(t)〉〈ψi(t)| (17)

where

|ψ1(t)〉 =
∞∑

n=0

bn exp(−iδt)

(
cos µnt + iδ

sin(µnt)

µn

)
|n〉

|ψ2(t)〉 = −i
∞∑

n=0

bn exp(iδt)Vn

sin(µnt)

µn

|n + k〉 (18)

|ψ3(t)〉 = −i
∞∑

n=0

bn exp(iδt)Un

sin(µnt)

µn

|n + s〉

|ψ4(t)〉 = −i
∞∑

n=0

bn exp(−iδt)Vn

sin(µnt)

µn

|n〉

|ψ5(t)〉 =
∞∑

n=0

bn

(
1 − V 2

n

µ2
n

+
V 2

n

µ2
n

exp(iδt) cos(µnt) + iδV 2
n exp(iδt)

sin µnt

µ3
n

)
|n + k〉 (19)

|ψ6(t)〉 =
∞∑

n=0

bn

((
cos(µnt) + iδ

sin(µnt)

µn

)
VnUn

µ2
n

exp(iδt) − VnUn

µ2
n

)
|n + s〉

|ψ7(t)〉 = −i
∞∑

n=0

bn exp(−iδt)Un

sin(µnt)

µn

|n〉

|ψ8(t)〉 =
∞∑

n=0

bn

((
cos(µnt) + iδ

sin(µnt)

µn

)
VnUn

µ2
n

exp(iδt) − VnUn

µ2
n

)
|n + k〉 (20)

|ψ9(t)〉 =
∞∑

n=0

bn

(
1 − U 2

n

µ2
n

+
U 2

n

µ2
n

exp(iδt) cos(µnt) + iδU 2
n exp(iδt)

sin µnt

µ3
n

)
|n + s〉.

Then the von Neumann entropy for the reduced state S
(
ρF

t

)
is computed by

S
(
ρF

t

) = −
9∑

i=1

λF
i (t) log λF

i (t) (21)

where
{
λF

i (t)
}

are the solutions of

det[ ˆρ(t) − ˆλ(t) ˆN(t)] = 0 (22)

where ˆρ(t) and ˆN(t) are 9 × 9 matrices having the following elements:

[ ˆρ(t)]ij ≡ 〈ψi(t)|ρF
t |ψj(t)〉

[ ˆN(t)]ij ≡ 〈ψi(t)|ψj(t)〉
(i, j = 1, 2, 3, . . . , 9) (23)
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On the other hand, the final state of the atomic system is given by taking the partial trace over
the field system,

ρA
t ≡ Tr FE∗

t ρ

≡ �1|a〉〈a| + �2|a〉〈b| + �3|a〉〈c| + �4|b〉〈a| + �5|b〉〈b|
+ �6|b〉〈c| + �7|c〉〈a| + �8|c〉〈b| + �9|c〉〈c| (24)

where �i are given by

�i =
3∑

k=1

{
YkC

(n)
11 C

∗(m)
ki + Yk+3C

(n)
21 C

∗(m)
ki + Yk+6C

(n)
31 C

∗(m)
ki

}
i = 1, 2, 3

�j =
3∑

k=1

{
YkC

(n)
12 C

∗(m)
kj−3 + Yk+3C

(n)
22 C

∗(m)
kj−3 + Yk+6C

(n)
32 C

∗(m)
kj−3

}
j = 4, 5, 6 (25)

�r =
3∑

k=1

{
YkC

(n)
13 C

∗(m)
kr−6 + Yk+3C

(n)
23 C

∗(m)
kr−6 + Yk+6C

(n)
33 C

∗(m)
kr−6

}
r = 7, 8, 9

and Yi are given by

Yi = exp
(−itE(nm)

1i

){
ς1C

∗(n)
12 C

(m)
i2 + ς2C

∗(n)
11 C

(m)
i1 + ς3C

∗(n)
13 C

(m)
i3

}
i = 1, 2, 3

Yj = exp
(−itE(nm)

2j

){
ς1C

∗(n)
22 C

(m)
j2 + ς2C

∗(n)
21 C

(m)
j1 + ς3C

∗(n)
23 C

(m)
j3

}
j = 4, 5, 6 (26)

Yr = exp
(−itE(nm)

3r

){
ς1C

∗(n)
32 C

(m)
r2 + ς2C

∗(n)
31 C

(m)
r1 + ς3C

∗(n)
33 C

(m)
r3

}
r = 7, 8, 9

where exp
(−itE(nm)

ij

) = exp
(−it

(
E

(n)
i − E

(m)
j

)
.

Then the von Neumann entropy for the reduced state S
(
ρA

t

)
is computed by

S
(
ρA

t

) = −
3∑

i=1

λA
i (t) log λA

i (t) (27)

where λA
i (t) is given by

λA
1 (t) = − 1

3 − 2
3 (

√
1 − 3ϑ1) cos(β)

λA
2 (t) = − 1

3 + 1
3 (cos(β) +

√
3 sin(β))(

√
1 − 3ϑ1) (28)

λA
3 (t) = − 1

3 + 1
3 (cos(β) −

√
3 sin(β))(

√
1 − 3ϑ1)

where

β = 1

3
cos−1

(
2 − 9ϑ1 − 27ϑ2

2(1 − 3ϑ1)3/2

)

ϑ1 = �1�9 + �1�5 + �5�9 − |�6|2 − |�2|2 − |�3|2 (29)

ϑ2 = �1�5�9 + �2�7�6 − �1|�6|2 − �9|�2|2 − �5|�3|2.
Using the above equations, the final expression for the entanglement degree in the three-level
system takes the following form:

IE∗
t ρ

(
ρA

t , ρF
t

) ≡ Tr
{
E∗

t ρ
(
logE∗

t ρ − log
(
ρA

t ⊗ ρF
t

))}
= S

(
ρA

t

)
+ S

(
ρF

t

) − S(E∗
t ρ)

= −
9∑

i=1

λF
i (t) log λF

i (t) −
3∑

i=1

λA
i (t) log λA

i (t) +
3∑

i=1

ςi log ςi. (30)
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It is evident that equation (30) allows us to study the entanglement degree of the system and
convert from pure states into mixed states, which is crucial for many applications in quantum
optics, physics and computing. As one can see, it is unlikely to express the sums in the
above equations in a closed form, however for reasonably large value of n̄, direct numerical
evaluations can be performed.

4. Numerical simulations

In this section, our main focus is to study the behaviour of the entanglement degree
IE∗

t ρ

(
ρA

t , ρF
t

)
equation (30). We investigate the numerical dependence of the entanglement

degree on parameters such as the intensity-dependent coupling and detuning. There are some
important features to note here; while the dressed-state is related to the entanglement (since
the dressed states are in fact maximally entangled), they are two different concepts: states
with the same dressedness can have different amounts of entanglement (as measured by the
von Neumann entropy of their subsystems). Meanwhile, the weight factors bn measure the
relative importance of each of these components. In physical terms, their squares b2

n correspond
to the probability distribution for measurements of the total excitation number operator on
the initial state. In the particular case of a field initially in a coherent state, the probability
distribution is given by

b2
n = exp(n̄)

n̄n

n!
(31)

where n̄ is the mean photon number of photons present initially in the field. Let us mention
that this distribution has its maximum around n̄. The analytical expression for Ut can be
obtained and the dynamical behaviour of the atom and the field variables of the system can
be studied. We will first compare the entanglement degree obtained here with that obtained
when the atom was initially prepared in a pure state [15] in order to show the validity of our
measure. We specifically present the results for the evolution of the entanglement degree and
atomic occupation probability.

It should be noted that at a special choice of the parameters ςi such as ς1 = 1 (ς2 = 1),
i.e., the atom initially in the upper (lower) state, the final state of the system becomes the pure
entangled state. Therefore it is sufficient to use von Neumann entropy in order to measure the
degree of entanglement for the above cases. Then the entanglement degree takes just twice
the reduced von Neumann entropy i.e., IE∗

t ρ

(
ρA

t , ρF
t

) = 2S
(
ρA

t

)
. These situations have been

considered and the reduced von Neumann entropy has been applied to analyse the quantum
fluctuations [15]. In a general case (i.e., ς1 �= 0 or 1), the final state does not necessarily
become a pure state, so that we need to adopt the IE∗

t ρ

(
ρA

t , ρF
t

)
in order to measure the

degree of entanglement in the present model. Thus our initial setting enables us to discuss
the variation of the entanglement degree for different values of the parameter ς1 of the initial
atomic system.

In figure 2, we plot the entanglement degree IE∗
t ρ

(
ρA

t , ρF
t

)
, the horizontal axis indicates

dimensionless time γ1t, and for ς1 = 0.99. We assume the exact resonance case � = 0,

the mean photon number n̄ = 5, γ1 = γ2 and the nonlinear intensity-dependent coupling
f (n) = 1. It is remarkable that the first maximum of the entanglement degree at γ1t > 0
is achieved at the collapse time, and at one-half of the revival time [13], the entanglement
degree reaches its local minimum. Meanwhile, the general feature of the entanglement degree
in the case ς1 takes values such that ς1 ≈ 1 is also almost identical to that in the previous
cases (see figure 2(a)). We find that the maximum value of the entanglement in this case
is given by IE∗

t ρ

(
ρA

t , ρF
t

) ≈ 2.18. When we further increase the parameter ς1 ≈ 1 we find
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Figure 2. (a) The evolution of the entanglement degree IE∗
t ρ (ρA

t , ρF
t ) and (b) the occupation

probability Pa(t), as functions of the scaled time γ1t . The intensity-dependent atom–field coupling
f (n) = 1, ς1 = 0.99, ς3 = 0. The intensity of the initial coherent field n̄ = 5, and the detuning
parameter � has zero value, the number of the photons is k = s = 1 and γ1 = γ2 = 1.
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Figure 3. (a) The evolution of the entanglement degree IE∗
t ρ (ρA

t , ρF
t ) and (b) the occupation

probability Pa(t), as functions of the scaled time γ1t, f (n) = 1, ς1 = 0.7, ς3 = 0. The intensity
of the initial coherent field n̄ = 5, and � = 0, the number of the photons is k = s = 1 and γ1 = γ2.

that our degree of entanglement takes just twice the value of the von Neumann entropy i.e.,
IE∗

t ρ

(
ρA

t , ρF
t

) ≈ 2 log 3. It has been shown that the atomic occupation probability undergoes a
collapse followed by a series of revivals (see figure 2(b)). The collapse is due to the destructive
interference of quantum Rabi flopping at different frequencies; a similar phenomenon may
also occur with a classical field, however, the revivals are a purely quantum mechanical effect
that originates in the discreteness of the quantum field. Another significant feature of the
effect of initial state specification and entanglement is revealed in figure 3, in which we
consider ς1 = 0.7. We see that the maximum value of the entanglement degree decreases (see
figure 3(a)). Also, in this case we show that the amplitude of the oscillations is decreased.

To estimate the revival times of the Rabi oscillations in the limit of large one-photon
detuning, we follow an analogous procedure given in [16]. We assume that the dominant
contribution in the summation is from the term for which n ≈ n̄, where n̄ is the mean photon
number for which the initial photon number distribution is maximum. To single out this
dominant term we rewrite µ2

n = µ2
n̄ +

(
γ 2

1 + γ 2
2

)
(n − n̄), then the time of revivals tR of

the Rabi oscillations is given by tR = 2πr�
/(

γ 2
1 + γ 2

2

)
. Thus in the large detuning limit,

the revival times are independent of the intensity of the initial field. However, as soon as we
take two different values of the coupling parameters we realize that there are close-ups of the
intermediate regions between the maxima of each two consecutive revivals, see figure 4. In
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Figure 4. (a) The evolution of the entanglement degree IE∗
t ρ (ρA

t , ρF
t ) and (b) the occupation

probability Pa(t), as functions of the scaled time γ1t . The intensity-dependent atom–field coupling
f (n) = 1, ς1 = 0.8, ς3 = 0. The intensity of the initial coherent field n̄ = 5, and the detuning
parameter � has zero value, the number of the photons is k = s = 1 and γ1 = 1, γ2 = 0.5.
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Figure 5. (a) The evolution of the entanglement degree IE∗
t ρ (ρA

t , ρF
t ) and (b) the occupation

probability Pa(t), as functions of the scaled time γ1t . The intensity-dependent atom–field coupling
f (n) = 1, ς1 = 0.8, ς3 = 0. The intensity of the initial coherent field n̄ = 5, and the detuning
parameter � has zero value, the number of the photons is k = s = 1 and γ1 = γ2 = 1,�/γ1 = 5.

this figure, we consider the case in which γ1 �= γ2, such that γ1 = 1, γ2 = 0.5 and ς1 = 0.8.

We see that the maximum value of the entanglement degree decreases further.
The effect of the parameter � which describes the mismatch between the atomic frequency

and the mean frequency of the cavity mode has been considered in figure 5. We set the other
parameters γ1 = γ2 = 1, ς1 = 0.8 and the detuning parameter �/γ1 = 5. When the detuning is
considered we find that the situation has been changed. As we increase the value of the detuning
we have more oscillations but with time of revivals prolonged, see for example figure 5.
It is also noted that the amplitudes of the oscillation in this model are less than their counterparts
for the two-level case. Finally, we point out that as we increase the value of the detuning
�/γ1 one can see that the revival time is also prolonged, however the period of fluctuations is
decreasing. Detuning affects the revival time by elongating it and the maximum value of the
entanglement degree becomes smaller and smaller. Similar to the case of a two-level atom,
detuning shifted the atomic occupation probability around which it oscillates upward meaning
that the energy is stored in the atomic system. It is already known [17] that different from
the one-photon two-level case only the vacuum state can be a trapping state. Even this can
only occur for � � γ1, γ2, because for small detuning the system can leave the vacuum state
by the emission of one photon as well as by the emission of two photons. Interaction times
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Figure 6. (a) The evolution of the entanglement degree IE∗
t ρ (ρA

t , ρF
t ) and (b) the occupation

probability Pa(t), as functions of the scaled time γ1t . The intensity-dependent atom–field coupling
f (n) = √

n, ς1 = 0.8, ς3 = 0. The intensity of the initial coherent field n̄ = 5, and the detuning
parameter � has zero value, the number of the photons is k = s = 1 and γ1 = γ2 = 1.
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Figure 7. (a) The evolution of the entanglement degree IE∗
t ρ (ρA

t , ρF
t ) and (b) the occupation

probability Pa(t), as functions of the scaled time γ1t . The intensity-dependent atom–field coupling
f (n) = 1/

√
n , ς1 = 0.8, ς3 = 0. The intensity of the initial coherent field n̄ = 5, and the detuning

parameter � has zero value, the number of the photons is k = s = 1 and γ1 = γ2 = 1.

t > 0, for which the probabilities of both processes simultaneously become zero, do not exist.
For � � γ1, γ2, the occupation probability of the level |a〉A and, thus, the probability of a
one-photon process becomes negligible.

Now we will turn our attention to the effect on the entanglement degree of the nonlinearity
of the intensity-dependent coupling as an example, i.e. f (n) = √

n, in figure 6, and
f (n) = 1/

√
n in figure 7. In particular, these forms of the intensity-dependent couplings

between the atom and the cavity field remain a mere mathematical speculation but a similar
form has been observed in the ion–field interaction [18]. Comparing the behaviour in
figure 6, with cases considered in figure 7, we may say that the effect of the intensity coupling
is rather different, where the oscillating period for f (n) = √

n is shorter than that of f (n) = 1
case. Also, in figure 6 there are sharp peaks observed with some kind of periodicity and more
oscillations in the same period of time have been observed. This can be thought of implying
that the effects on the entanglement degree of both specific intensity-dependent coupling and
the initial field photon statistics can be counterbalanced in some special cases. Also, from
our further calculations (which are not displayed here), we may say that the general behaviour
for f (n) = √

n is similar to the two-photon case, i.e., k = s = 2. The case in which the
intensity-dependent coupling is taken to be f (n) = 1/

√
n is quite interesting where in this
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case the entanglement degree function oscillates around the maximum values when the time
goes on. We have shown here a new phenomenon that periodic oscillations occur in the
presence of intensity-dependent coupling. This difference reflects the various influences of
intensity-dependent media on the interaction between atom and field. It is worth pointing out
the availability of the longer period entanglement (see figure 7(a)). The entanglement as a
physical resource is available on the condition that the entanglement should last long enough
so that we can accomplish some task. For example, in order to generate the entanglement
atomic state, the entanglement between the atom and the cavity field must survive long enough
so that it can be transferred to the next atom via a coherent interaction. At this point, the
increasingly longer period entanglement has some advantages. Although some authors use
another method to prepare multiparticle entanglement, longer period entanglement is available.
It should also be mentioned here that we have included the detuning parameter but we found
that the entanglement degree is affected little by different values of the detuning. A slight
change in ςi therefore dramatically alters the entanglement. It should be noted that at a special
choice of the nonlinear intensity-dependent coupling, the situation becomes interesting, in
this case, we find that the nonlinear three-level system with an initially coherent field exhibits
superstructures instead of the first-order revivals resembling those manifested by the standard
three-level system.

In the following discussion we would like to highlight another special feature of the present
model. It is well known that, in the case of large one-photon detuning, terms involving the
ground-excited state coherence and excited state population can be adiabatically eliminated.
The three-level system is then equivalent to an effective two-level system. Because of its
simplicity the effective two-level system provides a good understanding of the physical
phenomena responsible for the entangled state preparation and allows one to carry out
analytical calculations. So, when δ � 1, the transition of the electron can be considered
as existing only between the states |b〉A and |c〉A [19]. The implementation of the entangled
coherent state preparation scheme requires a single three-level Rydberg atom only, in the
�-configuration. Previous works have concentrated essentially on the generation of entangled
states of atoms [20]. Recently, several kinds of entangled states of the electromagnetic field,
such as entangled coherent states [21], multimode even and odd coherent states [22], entangled
photon number states [23] and so on, have been discussed in the literature. In the framework
of cavity quantum electrodynamics a theoretical scheme for the generation of entangled states
of photons has been proposed [24, 25]. The basic idea of most of the experimental procedures
aimed at generating assigned nonclassical states of one or more modes of a single cavity field,
can be traced back to the possibility of manipulating the statistical properties of the radiation
field by injecting, one at a time, a flux of Rydberg atoms into the cavity [26, 27]. The high-Q
cavities of life time of the order of millisecond are being used in recent experiments [26].

Squeezed states of light are nonclassical states for which the fluctuations in one of two
quadrature phase amplitudes of the electromagnetic field drop below the level of fluctuations
associated with the vacuum state of the field. Squeezed states therefore provide a field
which is in some sense quieter than the vacuum state and hence can be employed to improve
measurement precision beyond the standard quantum limits. In this case, the photon number
distribution for a squeezed state, which appears in equation (4), can be written as

b2
n = J n

2nn!zn+1

∣∣∣∣Hn

(
β√
2jz

)∣∣∣∣
2

exp

[
−|β|2 +

J

z
Re(β)2

]
(32)

where z = cosh r, J = sinh r, β = zα + Jα∗, α = |α| exp(iε) and Hn is the Hermite
polynomial. We suppose here the minor axis of the ellipse, representing the direction of
squeezing, is parallel to the coordinate of the field oscillator. The initial phase ε of α is
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Figure 8. (a) The evolution of the function IE∗
t ρ (ρA

t , ρF
t ) and (b) the occupation probability

Pa(t), as functions of the scaled time γ1t , for an input squeezed field with |α| = √
5, r = 0.5.

The intensity-dependent atom–field coupling f (n) = 1, ς1 = 0.99, ς3 = 0, and the detuning
parameter � has zero value.

the angle between the direction of coherent excitation and the direction of squeezing. The
mean photon number of this field is equal to n̄ = |α|2 + sinh2 r. Putting r = 0 we get the
photon distribution for an initial coherent state with n̄ = |α|2 whereas for α = 0 the photon
distribution for an initial squeezed vacuum state with n̄ = sinh2 r is recovered. The latter is
oscillatory with zeros for odd n.

In figure 8, we plot the function IE∗
t ρ

(
ρA

t , ρF
t

)
which describes the entanglement degree

in the case when the field is initially in a squeezed state. The initial number of photons in
the cavity is 5 + sinh2 1

2 . In this case we see that the entanglement degree function oscillates
around values less than the maximum values (see figure 8(a)). Figure 8(b) shows the atomic
occupation probability under the same conditions as in figure 8(a). Intuitive pictures of the
interaction between a three-level atom and an electric field commonly involve the expectation
that the atomic level populations must change as both systems exchange excitations over the
course of time [28, 29]. This is due to the absence of further atomic levels, which precludes
the existence of destructive interference between different atomic transitions. However, in
a fully quantized interaction model such as the three-level atom model, it is indeed possible
to have states in which the atomic populations are completely or nearly completely trapped.
This can be ultimately traced to the fact that the eigenstates of this model are entangled. From
our further calculations (which are not displayed here), we may say that the dependence of
the squeezed state with the intensity of the field on the entanglement degree gives behaviour
similar to figure 8. While, with increasing intensity, the amplitudes of local maxima and
minima are much more suppressed. Another contribution of intensity is to increase the
maximum value of the entanglement degree IE∗

t ρ

(
ρA

t , ρF
t

)
. Due to enhancement of intensity,

the degree of entanglement fortifies. We also note that with increasing intensity of the field,
nonlinear behaviour of the field is lost and its gain in coherence becomes obvious. Although the
generalization of the quantum mutual entropy of entanglement to a multipartite case suggested
in the present work looks rather natural, one faces a lot of difficulties while trying to compute
the entanglement for a generic state. Progress can be achieved only if the state has some
special properties or some symmetry.

5. Summary

Concluding this paper, we recapitulate our main results: in principle, it is possible to address the
characterization of the entanglement degree due to quasi-mutual entropy. We have presented
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an analytical solution to a three-level system interacting with a single mode taking into account
an arbitrary form of the nonlinear intensity-dependent coupling on the basis of the dressed-state
formalism. It is appropriate to emphasize that the work here extends previous studies in this
context [5–7]. In particular, we have explored the influence of the various parameters of the
system on the entanglement degree. It is found that entanglement is affected strongly when
nonlinear intensity-dependent coupling is taken into account. As expected, the maximum
value of the entanglement degree decreases with decreasing occupation probability of the
upper atomic level. We have found that in general the shape of revival envelopes is a direct
reflection of the form of a continuous interpolation of the probability distribution. In the
particular case of a field initially in a coherent state, this explains the appearance of a doublet
structure in the revivals in the limit of greatest populations. It is of interest to remark that
at a special choice of the nonlinear intensity-dependent coupling we have obtained longer
period of the entanglement. We expect that the results of this paper can be of help for some
problems, especially for quantum computation or quantum information processing, because
research into the dynamical properties of multi-level atoms or trapped ions locates completely
in the field of quantum computation. We also expect that this paper can lead to some other
interesting discussions for systems of multi-level atoms with arbitrary form of the nonlinear
intensity-dependent coupling, such as generating nonclassical states of one or more modes of
a single cavity field. The next obvious step in the progression of this work would be to damp
the quantum field interacting with the atom. We hope to report on such issues in a forthcoming
paper.
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